1.52-GHz micromechanical extensional wine-glass mode ring resonators

Vibrating polysilicon micromechanical ring resonators, using a unique extensional wine-glass-mode shape to achieve lower impedance than previous UHF resonators, have been demonstrated at frequencies as high as 1.2 GHz with a Q of 3,700, and 1.52 GHz with a Q of 2,800. The 1.2-GHz resonator exhibits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2008-04, Vol.55 (4), p.890-907
Hauptverfasser: Yuan Xie, Sheng-Shian Li, Yu-Wei Lin, Zeying Ren, Nguyen, C.T.-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vibrating polysilicon micromechanical ring resonators, using a unique extensional wine-glass-mode shape to achieve lower impedance than previous UHF resonators, have been demonstrated at frequencies as high as 1.2 GHz with a Q of 3,700, and 1.52 GHz with a Q of 2,800. The 1.2-GHz resonator exhibits a measured motional resistance of 1 MOmega with a dc-bias voltage of 20 V, which is 2.2 times lower than the resistance measured on radial contour- mode disk counterparts at the same frequency. The use of larger rings offers a path toward even lower impedance, provided the spurious modes that become more troublesome as ring size increases can be properly suppressed using methods described herein. With spurious modes suppressed, the high-Q and low-impedance advantages, together with the multiple frequency on-chip integration advantages afforded by capacitively transduced mumechanical resonators, make this device an attractive candidate for use in the front-end RF filtering and frequency generation functions needed by wireless communication devices.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2008.725