Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis
In the present work, the transesterification reaction of rapeseed oil with methanol, in the presence of alkaline catalysts, either homogeneous (NaOH) or heterogeneous (Mg MCM-41, Mg–Al Hydrotalcite, and K+ impregnated zirconia), using low frequency ultrasonication (24 kHz) and mechanical stirring (6...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2009-07, Vol.90 (7), p.1016-1022 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, the transesterification reaction of rapeseed oil with methanol, in the presence of alkaline catalysts, either homogeneous (NaOH) or heterogeneous (Mg MCM-41, Mg–Al Hydrotalcite, and K+ impregnated zirconia), using low frequency ultrasonication (24 kHz) and mechanical stirring (600 rpm) for the production of biodiesel fuel was studied. Selection of heterogeneous catalysts was based on a combination of their porosity and surface basicity. Their characterization was carried out using X-ray diffraction (XRD), Nitrogen adsorption–desorption porosimetry and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The activities of the catalysts were related to their basic strength. Mg–Al hydrotalcite showed particularly the highest activity with conversion reaching 97%). The activity of ZrO
2 in the transesterification reaction increased as the catalyst was doped with more potassium cations, becoming thus more basic. Use of ultrasonication significantly accelerated the transesterification reaction compared to the use of mechanical stirring (5 h vs. 24 h).
Given the differences in experimental design, it can be concluded that the homogeneous catalyst accelerated significantly the transesterification reaction, as compared to all heterogeneous catalysts, using both mechanical stirring (15 min vs. 24 h) and ultrasonication (10 min vs. 5 h). However, the use of homogeneous base catalysts requires neutralization and separation from the reaction mixture leading to a series of environmental problems related to the use of high amounts of solvents and energy. Heterogeneous solid base catalysts can be easily separated from the reaction mixture by simple filtration, they are easily regenerated and bear a less corrosive nature, leading to safer, cheaper and more environment-friendly operations. |
---|---|
ISSN: | 0378-3820 1873-7188 |
DOI: | 10.1016/j.fuproc.2009.03.002 |