Simulation based size optimization of a PV/wind hybrid energy conversion system with battery storage under various load and auxiliary energy conditions
In this paper, size of a PV/wind integrated hybrid energy system with battery storage is optimized under various loads and unit cost of auxiliary energy sources. The optimization is completed by a simulation based optimization procedure, OptQuest, which integrates various heuristic methods. In the s...
Gespeichert in:
Veröffentlicht in: | Applied energy 2009-09, Vol.86 (9), p.1387-1394 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, size of a PV/wind integrated hybrid energy system with battery storage is optimized under various loads and unit cost of auxiliary energy sources. The optimization is completed by a simulation based optimization procedure, OptQuest, which integrates various heuristic methods. In the study, the main performance measure is the hybrid energy system cost. And the design parameters are PV size, wind turbine rotor swept area and the battery capacity. The case study is realized for Izmir Institute of Technology Campus Area, Urla, Turkey. The simulation model of the system is realized in ARENA 12.0, a commercial simulation software, and is optimized using the OptQuest tool in this software. Consequently, the optimum sizes of PV, wind turbine and battery capacity are obtained under various auxiliary energy unit costs and two different loads. The optimum results are confirmed using Loss of Load Probability (LLP) and autonomy analysis. And the investment costs are investigated how they are shared among those four energy sources at the optimum points. |
---|---|
ISSN: | 0306-2619 1872-9118 |
DOI: | 10.1016/j.apenergy.2008.12.015 |