Examination of reactor grade graphite using neutron powder diffraction

Graphite is of principal interest in Generation IV nuclear reactor concepts. In particular, graphite will be the moderator for the Very High Temperature Reactor. In support of experimental and computational investigations that aim at understanding the behavior of reactor grade graphite under operati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2009-07, Vol.392 (2), p.225-229
Hauptverfasser: DiJulio, D.D., Hawari, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphite is of principal interest in Generation IV nuclear reactor concepts. In particular, graphite will be the moderator for the Very High Temperature Reactor. In support of experimental and computational investigations that aim at understanding the behavior of reactor grade graphite under operating conditions, neutron powder diffraction experiments have been performed at the North Carolina State University PULSTAR reactor. The collected diffraction patterns exhibit intense broadening of several of the reflections, characteristic of turbostratic stacking. In order to quantify this disorder structurally, a model combined with a Rietveld-like refinement approach was implemented, which includes several refinable parameters that aim at describing this type of structure. Stacking parameters representing the probabilities of a random and registered shift between stacking packages were defined. The results indicate that the studied reactor grade graphite specimens contain a small fraction of layer disorder. The inferred interlayer spacing for the specimens is slightly larger than the theoretical value for graphite of 0.335 nm and the lattice constant is slightly less than 0.246 nm. The developed methodology is found to be successful in fitting the neutron diffraction patterns of reactor grade graphite.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2009.03.014