Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties
In this paper, the in-plane free vibration analysis of functionally graded (FG) thick circular arches subjected to initial stresses due to thermal environment is studied. The formulations are based on the two-dimensional elasticity theory. The material properties are assumed to be temperature-depend...
Gespeichert in:
Veröffentlicht in: | Composite structures 2009-11, Vol.91 (1), p.38-47 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the in-plane free vibration analysis of functionally graded (FG) thick circular arches subjected to initial stresses due to thermal environment is studied. The formulations are based on the two-dimensional elasticity theory. The material properties are assumed to be temperature-dependent and graded in the thickness direction. Considering the thermal environment effects, the equations of motion are derived using the Hamilton’s principle. The initial thermal stresses are obtained by solving the two-dimensional thermoelastic equilibrium equations. Two types of temperature rise, uniform and variable through the thickness, is considered. Differential quadrature method (DQM) is adopted to solve the equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with those available in the literature for isotropic arches. The effects of temperature rise, material and geometrical parameters on the natural frequencies are investigated. The new results can be used as benchmark solutions for future researches. |
---|---|
ISSN: | 0263-8223 1879-1085 |
DOI: | 10.1016/j.compstruct.2009.04.034 |