Real time phase detection based online monitoring of batch fermentation processes

Industrial fermentations conducted in a batch or semi-batch mode demonstrate significant batch-to-batch variability. Current batch process monitoring strategies involve manual interpretation of highly informative but low frequency offline measurements such as concentrations of products, biomass and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process biochemistry (1991) 2009-08, Vol.44 (8), p.799-811
Hauptverfasser: Maiti, Soumen K., Srivastava, Rajesh K., Bhushan, Mani, Wangikar, Pramod P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Industrial fermentations conducted in a batch or semi-batch mode demonstrate significant batch-to-batch variability. Current batch process monitoring strategies involve manual interpretation of highly informative but low frequency offline measurements such as concentrations of products, biomass and substrates. Fermentors are also fitted with computer interfaced instrumentation, enabling high frequency online measurements of several variables and automated techniques which can utilize this data would be desirable. Evolution of a batch fermentation, which typically uses complex medium, can be conceptualized as a sequence of several distinct metabolic phases. Monitoring of batch processes can then be achieved by detecting the phase change events, also termed as singular points (SP). In this work, we propose a novel moving window based real-time monitoring strategy for SP detection based only on online measurements. The key hypothesis of the strategy is that the statistical properties of the online data undergo a significant change around an SP. The strategy is easily implementable and does not require past data or prior knowledge of the number or time of occurrence of SPs. The efficacy of the proposed approach has been demonstrated to be superior compared to that of reported techniques for industrially relevant model organisms. The proposed approach can be used to decide offline sampling timings in real time.
ISSN:1359-5113
1873-3298
DOI:10.1016/j.procbio.2009.03.008