Rigorous diffraction simulations of topographic wafer stacks in double patterning

Double patterning is regarded as a potential candidate to achieve the 32 nm node in semiconductor manufacturing. A key problem for a standard litho-etch–litho-etch (LELE) double patterning process is to evaluate and tackle the impact of the wafer topography resulting from the hardmask pattern on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2009-04, Vol.86 (4), p.489-491
Hauptverfasser: Shao, Feng, Evanschitzky, Peter, Fühner, Tim, Erdmann, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 4
container_start_page 489
container_title Microelectronic engineering
container_volume 86
creator Shao, Feng
Evanschitzky, Peter
Fühner, Tim
Erdmann, Andreas
description Double patterning is regarded as a potential candidate to achieve the 32 nm node in semiconductor manufacturing. A key problem for a standard litho-etch–litho-etch (LELE) double patterning process is to evaluate and tackle the impact of the wafer topography resulting from the hardmask pattern on the second lithography step. In this paper, we apply rigorous electromagnetic field (EMF) solvers to investigate the wafer topography effects. At first, the studied 3D mask is split into two masks. The topography resulting from the exposure with the first split mask is described by a patterned hardmask. Based on that, the bottom antireflective coating (BARC) thickness of the second wafer stack is optimized. Alternatively, a two beam interference and the full diffraction spectrum of the second mask are used as the illumination of the wafer stacks, respectively. Finally, simulated 3D resist profiles for different BARC thicknesses are shown. The importance of wafer topography impact, the optimization of topographic wafer stacks, and the possible solutions to compensate for the impact of the wafer topography are discussed.
doi_str_mv 10.1016/j.mee.2008.11.078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34528543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931708005613</els_id><sourcerecordid>34528543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1b3fa5a4a4bdb5b2e7b105c6d34f305187d9f65a65694f6de3e3d71dd4305883</originalsourceid><addsrcrecordid>eNp9kE1PwyAYx4nRxDn9AN646K0VSmlpPJnFt2SJ0exOKDxMZlsqdBq_vSxbPHoCwu95-f8QuqQkp4RWN5u8B8gLQkROaU5qcYRmVNQs47wSx2iWmDprGK1P0VmMG5LeJREz9Prm1j74bcTGWRuUnpwfcHT9tlO7a8Te4smPfh3U-O40_lYWAo6T0h8RuwEbv207wKOaJgiDG9bn6MSqLsLF4Zyj1cP9avGULV8enxd3y0wzLqaMtswqrkpVtqblbQF1SwnXlWGlZYSn3U1jK64qXjWlrQwwYKamxpTpVwg2R9f7tmPwn1uIk-xd1NB1aoAUR7KSF4KXLIF0D-rgYwxg5Rhcr8KPpETu3MmNTO7kzp2kVCZ3qebq0FxFrbrkZdAu_hUWtG4aXjeJu91zkIJ-OQgyageDBuMC6Eka7_6Z8gtDnYV_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34528543</pqid></control><display><type>article</type><title>Rigorous diffraction simulations of topographic wafer stacks in double patterning</title><source>Elsevier ScienceDirect Journals</source><creator>Shao, Feng ; Evanschitzky, Peter ; Fühner, Tim ; Erdmann, Andreas</creator><creatorcontrib>Shao, Feng ; Evanschitzky, Peter ; Fühner, Tim ; Erdmann, Andreas</creatorcontrib><description>Double patterning is regarded as a potential candidate to achieve the 32 nm node in semiconductor manufacturing. A key problem for a standard litho-etch–litho-etch (LELE) double patterning process is to evaluate and tackle the impact of the wafer topography resulting from the hardmask pattern on the second lithography step. In this paper, we apply rigorous electromagnetic field (EMF) solvers to investigate the wafer topography effects. At first, the studied 3D mask is split into two masks. The topography resulting from the exposure with the first split mask is described by a patterned hardmask. Based on that, the bottom antireflective coating (BARC) thickness of the second wafer stack is optimized. Alternatively, a two beam interference and the full diffraction spectrum of the second mask are used as the illumination of the wafer stacks, respectively. Finally, simulated 3D resist profiles for different BARC thicknesses are shown. The importance of wafer topography impact, the optimization of topographic wafer stacks, and the possible solutions to compensate for the impact of the wafer topography are discussed.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2008.11.078</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Double patterning ; Dr.LiTHO ; Electronics ; Exact sciences and technology ; Lithography simulation ; Microelectronic fabrication (materials and surfaces technology) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Topography effect ; Wafer stack optimization ; Waveguide method</subject><ispartof>Microelectronic engineering, 2009-04, Vol.86 (4), p.489-491</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1b3fa5a4a4bdb5b2e7b105c6d34f305187d9f65a65694f6de3e3d71dd4305883</citedby><cites>FETCH-LOGICAL-c358t-1b3fa5a4a4bdb5b2e7b105c6d34f305187d9f65a65694f6de3e3d71dd4305883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2008.11.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21799579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Evanschitzky, Peter</creatorcontrib><creatorcontrib>Fühner, Tim</creatorcontrib><creatorcontrib>Erdmann, Andreas</creatorcontrib><title>Rigorous diffraction simulations of topographic wafer stacks in double patterning</title><title>Microelectronic engineering</title><description>Double patterning is regarded as a potential candidate to achieve the 32 nm node in semiconductor manufacturing. A key problem for a standard litho-etch–litho-etch (LELE) double patterning process is to evaluate and tackle the impact of the wafer topography resulting from the hardmask pattern on the second lithography step. In this paper, we apply rigorous electromagnetic field (EMF) solvers to investigate the wafer topography effects. At first, the studied 3D mask is split into two masks. The topography resulting from the exposure with the first split mask is described by a patterned hardmask. Based on that, the bottom antireflective coating (BARC) thickness of the second wafer stack is optimized. Alternatively, a two beam interference and the full diffraction spectrum of the second mask are used as the illumination of the wafer stacks, respectively. Finally, simulated 3D resist profiles for different BARC thicknesses are shown. The importance of wafer topography impact, the optimization of topographic wafer stacks, and the possible solutions to compensate for the impact of the wafer topography are discussed.</description><subject>Applied sciences</subject><subject>Double patterning</subject><subject>Dr.LiTHO</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Lithography simulation</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Topography effect</subject><subject>Wafer stack optimization</subject><subject>Waveguide method</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwyAYx4nRxDn9AN646K0VSmlpPJnFt2SJ0exOKDxMZlsqdBq_vSxbPHoCwu95-f8QuqQkp4RWN5u8B8gLQkROaU5qcYRmVNQs47wSx2iWmDprGK1P0VmMG5LeJREz9Prm1j74bcTGWRuUnpwfcHT9tlO7a8Te4smPfh3U-O40_lYWAo6T0h8RuwEbv207wKOaJgiDG9bn6MSqLsLF4Zyj1cP9avGULV8enxd3y0wzLqaMtswqrkpVtqblbQF1SwnXlWGlZYSn3U1jK64qXjWlrQwwYKamxpTpVwg2R9f7tmPwn1uIk-xd1NB1aoAUR7KSF4KXLIF0D-rgYwxg5Rhcr8KPpETu3MmNTO7kzp2kVCZ3qebq0FxFrbrkZdAu_hUWtG4aXjeJu91zkIJ-OQgyageDBuMC6Eka7_6Z8gtDnYV_</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Shao, Feng</creator><creator>Evanschitzky, Peter</creator><creator>Fühner, Tim</creator><creator>Erdmann, Andreas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Rigorous diffraction simulations of topographic wafer stacks in double patterning</title><author>Shao, Feng ; Evanschitzky, Peter ; Fühner, Tim ; Erdmann, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1b3fa5a4a4bdb5b2e7b105c6d34f305187d9f65a65694f6de3e3d71dd4305883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Double patterning</topic><topic>Dr.LiTHO</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Lithography simulation</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Topography effect</topic><topic>Wafer stack optimization</topic><topic>Waveguide method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Evanschitzky, Peter</creatorcontrib><creatorcontrib>Fühner, Tim</creatorcontrib><creatorcontrib>Erdmann, Andreas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Feng</au><au>Evanschitzky, Peter</au><au>Fühner, Tim</au><au>Erdmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous diffraction simulations of topographic wafer stacks in double patterning</atitle><jtitle>Microelectronic engineering</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>86</volume><issue>4</issue><spage>489</spage><epage>491</epage><pages>489-491</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>Double patterning is regarded as a potential candidate to achieve the 32 nm node in semiconductor manufacturing. A key problem for a standard litho-etch–litho-etch (LELE) double patterning process is to evaluate and tackle the impact of the wafer topography resulting from the hardmask pattern on the second lithography step. In this paper, we apply rigorous electromagnetic field (EMF) solvers to investigate the wafer topography effects. At first, the studied 3D mask is split into two masks. The topography resulting from the exposure with the first split mask is described by a patterned hardmask. Based on that, the bottom antireflective coating (BARC) thickness of the second wafer stack is optimized. Alternatively, a two beam interference and the full diffraction spectrum of the second mask are used as the illumination of the wafer stacks, respectively. Finally, simulated 3D resist profiles for different BARC thicknesses are shown. The importance of wafer topography impact, the optimization of topographic wafer stacks, and the possible solutions to compensate for the impact of the wafer topography are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2008.11.078</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2009-04, Vol.86 (4), p.489-491
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_34528543
source Elsevier ScienceDirect Journals
subjects Applied sciences
Double patterning
Dr.LiTHO
Electronics
Exact sciences and technology
Lithography simulation
Microelectronic fabrication (materials and surfaces technology)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Topography effect
Wafer stack optimization
Waveguide method
title Rigorous diffraction simulations of topographic wafer stacks in double patterning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20diffraction%20simulations%20of%20topographic%20wafer%20stacks%20in%20double%20patterning&rft.jtitle=Microelectronic%20engineering&rft.au=Shao,%20Feng&rft.date=2009-04-01&rft.volume=86&rft.issue=4&rft.spage=489&rft.epage=491&rft.pages=489-491&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2008.11.078&rft_dat=%3Cproquest_cross%3E34528543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34528543&rft_id=info:pmid/&rft_els_id=S0167931708005613&rfr_iscdi=true