Applying support vector machine to predict hourly cooling load in the building

In this paper, support vector machine (SVM) is used to predict hourly building cooling load. The hourly building cooling load prediction model based on SVM has been established, and applied to an office building in Guangzhou, China. The simulation results demonstrate that the SVM method can achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2009-10, Vol.86 (10), p.2249-2256
Hauptverfasser: Li, Qiong, Meng, Qinglin, Cai, Jiejin, Yoshino, Hiroshi, Mochida, Akashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, support vector machine (SVM) is used to predict hourly building cooling load. The hourly building cooling load prediction model based on SVM has been established, and applied to an office building in Guangzhou, China. The simulation results demonstrate that the SVM method can achieve better accuracy and generalization than the traditional back-propagation (BP) neural network model, and it is effective for building cooling load prediction.
ISSN:0306-2619
1872-9118
DOI:10.1016/j.apenergy.2008.11.035