Parameter Identification of Recurrent Fuzzy Systems With Fuzzy Finite-State Automata Representation
This paper presents the identification of nonlinear dynamical systems by recurrent fuzzy system (RFS) models. Two types of RFS models are discussed: the Takagi-Sugeno-Kang (TSK) type and the linguistic or Mamdani type. Both models are equivalent and the latter model may be represented by a fuzzy fin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2008-02, Vol.16 (1), p.213-224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the identification of nonlinear dynamical systems by recurrent fuzzy system (RFS) models. Two types of RFS models are discussed: the Takagi-Sugeno-Kang (TSK) type and the linguistic or Mamdani type. Both models are equivalent and the latter model may be represented by a fuzzy finite-state automaton (FFA). An identification procedure is proposed based on a standard general purpose genetic algorithm (GA). First, the TSK rule parameters are estimated and, in a second step, the TSK model is converted into an equivalent linguistic model. The parameter identification is evaluated in some benchmark problems for nonlinear system identification described in literature. The results show that RFS models achieve good numerical performance while keeping the interpretability of the actual system dynamics. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2007.902015 |