Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes
A micromodel based upon percolation theory is developed to predict effective properties in composite electrodes for solid oxide fuel-cell (SOFC) applications. The theory considers binary and multi-component mixtures of particles that are either ion or electron conductors. The model predicts effectiv...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2009-06, Vol.191 (2), p.240-252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A micromodel based upon percolation theory is developed to predict effective properties in composite electrodes for solid oxide fuel-cell (SOFC) applications. The theory considers binary and multi-component mixtures of particles that are either ion or electron conductors. The model predicts effective ionic and electronic conductivities, three-phase boundary lengths, and hydraulic pore radii. The effective properties depend upon primary physical characteristics, including average particle-radii, volumetric packing densities, particle contact angles, and porosity. All results are presented in nondimensional form, which provides considerable generality in their practical application. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2009.02.051 |