A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition

The purpose of this work is to establish existence and location results for the higher-order fully nonlinear differential equation u ( n ) ( t ) = f ( t , u ( t ) , u ′ ( t ) , … , u ( n − 1 ) ( t ) ) , n ≥ 2 , with the boundary conditions u ( i ) ( a ) = A i , for  i = 0 , … , n − 3 , u ( n − 1 ) (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-06, Vol.70 (11), p.4027-4038
Hauptverfasser: Grossinho, M.R., Minhós, F., Santos, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this work is to establish existence and location results for the higher-order fully nonlinear differential equation u ( n ) ( t ) = f ( t , u ( t ) , u ′ ( t ) , … , u ( n − 1 ) ( t ) ) , n ≥ 2 , with the boundary conditions u ( i ) ( a ) = A i , for  i = 0 , … , n − 3 , u ( n − 1 ) ( a ) = B , u ( n − 1 ) ( b ) = C or u ( i ) ( a ) = A i , for  i = 0 , … , n − 3 , c 1 u ( n − 2 ) ( a ) − c 2 u ( n − 1 ) ( a ) = B , c 3 u ( n − 2 ) ( b ) + c 4 u ( n − 1 ) ( b ) = C , with A i , B , C ∈ R , for i = 0 , … , n − 3 , and c 1 , c 2 , c 3 , c 4 real positive constants. It is assumed that f : [ a , b ] × R n − 1 → R is a continuous function satisfying one-sided Nagumo-type conditions which allows an asymmetric unbounded behaviour on the nonlinearity. The arguments are based on the Leray–Schauder topological degree and lower and upper solutions method.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2008.08.011