A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition
The purpose of this work is to establish existence and location results for the higher-order fully nonlinear differential equation u ( n ) ( t ) = f ( t , u ( t ) , u ′ ( t ) , … , u ( n − 1 ) ( t ) ) , n ≥ 2 , with the boundary conditions u ( i ) ( a ) = A i , for i = 0 , … , n − 3 , u ( n − 1 ) (...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-06, Vol.70 (11), p.4027-4038 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this work is to establish existence and location results for the higher-order fully nonlinear differential equation
u
(
n
)
(
t
)
=
f
(
t
,
u
(
t
)
,
u
′
(
t
)
,
…
,
u
(
n
−
1
)
(
t
)
)
,
n
≥
2
,
with the boundary conditions
u
(
i
)
(
a
)
=
A
i
,
for
i
=
0
,
…
,
n
−
3
,
u
(
n
−
1
)
(
a
)
=
B
,
u
(
n
−
1
)
(
b
)
=
C
or
u
(
i
)
(
a
)
=
A
i
,
for
i
=
0
,
…
,
n
−
3
,
c
1
u
(
n
−
2
)
(
a
)
−
c
2
u
(
n
−
1
)
(
a
)
=
B
,
c
3
u
(
n
−
2
)
(
b
)
+
c
4
u
(
n
−
1
)
(
b
)
=
C
,
with
A
i
,
B
,
C
∈
R
, for
i
=
0
,
…
,
n
−
3
, and
c
1
,
c
2
,
c
3
,
c
4
real positive constants.
It is assumed that
f
:
[
a
,
b
]
×
R
n
−
1
→
R
is a continuous function satisfying one-sided Nagumo-type conditions which allows an asymmetric unbounded behaviour on the nonlinearity. The arguments are based on the Leray–Schauder topological degree and lower and upper solutions method. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2008.08.011 |