Impact of Satellite-Derived Rapid-Scan Wind Observations on Numerical Model Forecasts of Hurricane Katrina
The impacts of special Geostationary Operational Environmental Satellite (GOES) rapid-scan (RS) wind observations on numerical model 24–120-h track forecasts of Hurricane Katrina are examined in a series of data assimilation and forecast experiments. The RS wind vectors are derived from geostationar...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2009-05, Vol.137 (5), p.1615-1622 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The impacts of special Geostationary Operational Environmental Satellite (GOES) rapid-scan (RS) wind observations on numerical model 24–120-h track forecasts of Hurricane Katrina are examined in a series of data assimilation and forecast experiments. The RS wind vectors are derived from geostationary satellites by tracking cloud motions through successive 5-min images. In these experiments, RS wind observations are added over the area 15°–60°N, 60°–110°W, and they supplement the observations used in operational forecasts. The inclusion of RS wind observations reduces errors in numerical forecasts of the Katrina landfall position at 1200 UTC 29 August 2005 by an average of 12% compared to control cases that include “targeted” dropsonde observations in the Katrina environment. The largest average improvements are made to the 84- to 120-h Katrina track forecasts, rather than to the short-range track forecasts. These results suggest that RS wind observations can potentially be used in future cases to improve track forecasts of tropical cyclones. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/2008mwr2627.1 |