On the @@uk@-Error Linear Complexity of @@up{m}$ @-Periodic Binary Sequences

In this correspondence, we study the statistical stability properties of p@@um@ -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p@@u2@. We show that their linear complexity and k-error linear com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2007-06, Vol.53 (6), p.2297-2304
Hauptverfasser: Han, Yun Kyoung, Chung, Jin-Ho, Yang, Kyeongcheol
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this correspondence, we study the statistical stability properties of p@@um@ -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p@@u2@. We show that their linear complexity and k-error linear complexity take a value only from some specific ranges. We then present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity in a new viewpoint different from the approach by Meidl. We also derive the distribution of p@@um@-periodic binary sequences with specific k-error linear complexity. Finally, we get an explicit formula for the expectation value of the k-error linear complexity and give its lower and upper bounds, when k les [p/2].
ISSN:0018-9448
DOI:10.1109/TIT.2007.896863