Modeling the Nonlinear Response of Multitones With Uncorrelated Phase
Traditional simulation approaches for predicting the frequency-domain response of nonlinear devices to multiple tone excitation enforce correlation of the phases of the individual tones. This is the case with time-domain simulators and transform-based schemes such as Harmonic balance as the waveform...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2007-10, Vol.55 (10), p.2147-2156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional simulation approaches for predicting the frequency-domain response of nonlinear devices to multiple tone excitation enforce correlation of the phases of the individual tones. This is the case with time-domain simulators and transform-based schemes such as Harmonic balance as the waveform must be single valued, thus enforcing correlation. Previous efforts in frequency-domain simulators using the arithmetic operator method (AOM) also produced results in good agreement with measurements for correlated-phase input signals. Here, the AOM is applied to directly determine the spectral response of nonlinear systems to excitation by multiple uncorrelated tones in a single simulation. Verification is provided using measurements of a nonlinear amplifier excited by 15 independent tones and comparison to the average of the ensemble of results from multiple correlated-phase simulations. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2007.906462 |