Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets
To increase the applicability of carbon nanotubes (CNTs) oxygen-containing functional groups were generated on their widely inert surface by using glow-discharge plasmas. CNT-sheets (bucky papers) produced from the powder-like raw material were used as substrates allowing for a more defined characte...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2009-08, Vol.47 (9), p.2174-2185 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To increase the applicability of carbon nanotubes (CNTs) oxygen-containing functional groups were generated on their widely inert surface by using glow-discharge plasmas. CNT-sheets (bucky papers) produced from the powder-like raw material were used as substrates allowing for a more defined characterization of one and the same surface by different analytical techniques. The plasma composition was analyzed by optical emission spectroscopy. Since the actual composition of the plasma-induced functional groups has still not been completely resolved, we performed an in-depth characterization of the treated samples by X-ray photoelectron (XPS) and Raman spectroscopy as well as electron spin resonance measurements. To overcome limitations of the XPS-analysis in distinguishing between groups featuring nearby binding energies, alcohol-, keto-/aldehyde-, and carboxyl-groups were tagged by derivatization techniques using fluorine-containing reagents (trifluoroaceticanhydride, trifluoromethylphenylhydrazine, and trifluoroethanol). Differential spectra were calculated to enhance the accuracy of the deconvolution of the XPS-spectra. This enabled us to determine dependencies of the plasma parameters, i.e. treatment time, process pressure, and gas composition (mixtures of Ar, O
2, H
2O, and H
2), on the composition of the generated functional groups as well as an up to 6-fold enhancement in derivatizable groups for switching process gas from Ar/O
2 to Ar/H
2O. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2009.03.059 |