Classification through hierarchical clustering and dimensionality reduction

This work describes a two-mode clustering hierarchical model capable of dealing with high dimensional data spaces. The algorithm seeks a transformed subspace which can represent the initial data, simplify the problem and possibly lead to a better categorization level. We test the algorithm on two ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Syrris, V., Petridis, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work describes a two-mode clustering hierarchical model capable of dealing with high dimensional data spaces. The algorithm seeks a transformed subspace which can represent the initial data, simplify the problem and possibly lead to a better categorization level. We test the algorithm on two hard classification problems, the phoneme and the pedestrian recognition; both are typical classification problems from real-life applications. Finally, the model is compared with many other algorithms.
ISSN:2161-4393
1522-4899
2161-4407
DOI:10.1109/IJCNN.2008.4634010