Dry sliding wear behaviour of magnesium alloy based hybrid composites in the longitudinal direction

In the present investigation, the wear behaviour of a creep-resistant AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations is examined in the longitudinal direction i.e., the plane containing random fibre orientation is perpendicular t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2009-06, Vol.267 (1), p.458-466
Hauptverfasser: Mondal, A.K., Kumar, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present investigation, the wear behaviour of a creep-resistant AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations is examined in the longitudinal direction i.e., the plane containing random fibre orientation is perpendicular to the steel counter-face. Wear tests are conducted on a pin-on-disc set-up under dry sliding condition having a constant sliding velocity of 0.837 m/s for a constant sliding distance of 2.5 km in the load range of 10–40 N. It is observed that the wear rate increases with increase in load for the alloy and the composites, as expected. Wear rate of the composites is lower than the alloy and the hybrid composites exhibit a lower wear rate than the Saffil short fibres reinforced composite at all the loads. Therefore, the partial replacement of Saffil short fibres by an equal volume fraction of SiC particles not only reduces the cost but also improves the wear resistance of the composite. Microstructural investigation of the surface and subsurface of the worn pin and wear debris is carried out to explain the observed results and to understand the wear mechanisms. It is concluded that the presence of SiC particles in the hybrid composites improves the wear resistance because these particles remain intact and retain their load bearing capacity even at the highest load employed, they promote the formation of iron-rich transfer layer and they also delay the fracture of Saffil short fibres to higher loads. Under the experimental conditions used in the present investigation, the dominant wear mechanism is found to be abrasion for the AE42 alloy and its composites. It is accompanied by severe plastic deformation of surface layers in case of alloy and by the fracture of Saffil short fibres as well as the formation of iron-rich transfer layer in case of composites.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2008.12.036