Multiframe image super-resolution using quasi-newton algorithms

Multiframe super-resolution algorithms can be used to reconstruct a high-quality high-resolution image from several warped, blurred, undersampled, and possibly noisy images. A widely used means of implementing such algorithms is by optimization-based model inversion. In the past, steepest-descent me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sorrentino, Diego A., Antoniou, Andreas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiframe super-resolution algorithms can be used to reconstruct a high-quality high-resolution image from several warped, blurred, undersampled, and possibly noisy images. A widely used means of implementing such algorithms is by optimization-based model inversion. In the past, steepest-descent methods have been applied. While easy to implement, these methods are known for their poor convergence properties and for being sensitive to numerical ill-conditioning. In this paper, we show that the multiframe super-resolution problem can be solved by using quasi-Newton algorithms and propose efficient implementations. Two of these algorithms were applied to a known super-resolution scheme and preliminary results obtained show a significant improvement in terms of convergence speed.
ISSN:0271-4302
2158-1525
DOI:10.1109/ISCAS.2008.4541405