Absolute Calibration of Radar Reflectivity Using Redundancy of the Polarization Observations and Implied Constraints on Drop Shapes
A major limitation of improved radar-based rainfall estimation is accurate calibration of radar reflectivity. In this paper, the authors fully automate a polarimetric method that uses the consistency between radar reflectivity, differential reflectivity, and the path integral of specific differentia...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2009-04, Vol.26 (4), p.689-703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major limitation of improved radar-based rainfall estimation is accurate calibration of radar reflectivity. In this paper, the authors fully automate a polarimetric method that uses the consistency between radar reflectivity, differential reflectivity, and the path integral of specific differential phase to calibrate reflectivity. Complete instructions are provided such that this study can serve as a guide for agencies that are upgrading their radars with polarimetric capabilities and require accurate calibration. The method is demonstrated using data from Météo-France’s operational C-band polarimetric radar. Daily averages of the calibration of radar reflectivity are shown to vary by less than 0.2 dB. In addition to achieving successful calibration, a sensitivity test is also conducted to examine the impacts of using different models relating raindrop oblateness to diameter. It turns out that this study highlights the suitability of the raindrop shape models themselves. Evidence is shown supporting the notion that there is a unique model that relates drop oblateness to diameter in midlatitudes. |
---|---|
ISSN: | 0739-0572 1520-0426 |
DOI: | 10.1175/2008JTECHA1152.1 |