Accumulation and Effects of Nodularin from a Single and Repeated Oral Doses of Cyanobacterium Nodularia spumigena on Flounder (Platichthys flesus L.)

Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which occurs regularly in the Baltic Sea during the summer season. In this study flounder (Platichthys flesus L.) was orally exposed to NODLN either as a single dose or as three repeated doses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of environmental contamination and toxicology 2009-07, Vol.57 (1), p.164-173
Hauptverfasser: Vuorinen, Pekka J, Sipiä, Vesa O, Karlsson, Krister, Keinänen, Marja, Furey, Ambrose, Allis, Orla, James, Kevin, Perttilä, Ulla, Rimaila-Pärnänen, Eija, Meriluoto, Jussi A. O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which occurs regularly in the Baltic Sea during the summer season. In this study flounder (Platichthys flesus L.) was orally exposed to NODLN either as a single dose or as three repeated doses 3 days apart. Liver and bile samples of the fish were taken 4 days after the last dose. Liver glutathione-S-transferase (GST) activity was also measured and the histopathology of the liver was investigated. The liver of the exposed fish was analyzed by liquid chromatography-mass spectrometry for NODLN concentration. The content of NODLN-like compounds in the bile was analyzed by enzyme-linked immunosorbent assay. NODLN exposure caused slightly incoherent liver architecture and degenerative cell changes in both groups. The mean liver GST activity was significantly higher in the repeatedly dosed flounders than in the singly dosed flounders or in the control. In conclusion, the significantly lower NODLN concentration and the increased GST activity in the liver of the repeatedly dosed flounders compared to the singly dosed flounders suggest that NODLN is rapidly detoxificated. The absence of NODLN glutathione conjugates and the low concentrations of NODLN-like compounds in the bile indicate that detoxification products disintegrate or they are rapidly excreted.
ISSN:0090-4341
1432-0703
DOI:10.1007/s00244-008-9258-7