Lower and upper solutions for a fully nonlinear beam equation

In this paper the two point fourth order boundary value problem is considered { u ( i v ) = f ( t , u , u ′ , u ″ , u ‴ ) , 0 < t < 1 , u ( 0 ) = u ′ ( 1 ) = u ″ ( 0 ) = u ‴ ( 1 ) = 0 , where f : [ 0 , 1 ] × R 4 → R is a continuous function satisfying a Nagumo-type condition. We prove the exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-07, Vol.71 (1), p.281-292
Hauptverfasser: Minhós, F., Gyulov, T., Santos, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper the two point fourth order boundary value problem is considered { u ( i v ) = f ( t , u , u ′ , u ″ , u ‴ ) , 0 < t < 1 , u ( 0 ) = u ′ ( 1 ) = u ″ ( 0 ) = u ‴ ( 1 ) = 0 , where f : [ 0 , 1 ] × R 4 → R is a continuous function satisfying a Nagumo-type condition. We prove the existence of a solution lying between lower and upper solutions using an a priori estimation, lower and upper solutions method and degree theory. The same arguments can be used, with adequate modifications, for any type of two-point boundary value problem, including all derivatives until order three, with the second and the third derivatives given in different end-points. An application to the extended Fisher–Kolmogorov problem will be obtained.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2008.10.073