Lower and upper solutions for a fully nonlinear beam equation
In this paper the two point fourth order boundary value problem is considered { u ( i v ) = f ( t , u , u ′ , u ″ , u ‴ ) , 0 < t < 1 , u ( 0 ) = u ′ ( 1 ) = u ″ ( 0 ) = u ‴ ( 1 ) = 0 , where f : [ 0 , 1 ] × R 4 → R is a continuous function satisfying a Nagumo-type condition. We prove the exis...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-07, Vol.71 (1), p.281-292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper the two point fourth order boundary value problem is considered
{
u
(
i
v
)
=
f
(
t
,
u
,
u
′
,
u
″
,
u
‴
)
,
0
<
t
<
1
,
u
(
0
)
=
u
′
(
1
)
=
u
″
(
0
)
=
u
‴
(
1
)
=
0
,
where
f
:
[
0
,
1
]
×
R
4
→
R
is a continuous function satisfying a Nagumo-type condition.
We prove the existence of a solution lying between lower and upper solutions using an
a priori estimation, lower and upper solutions method and degree theory. The same arguments can be used, with adequate modifications, for any type of two-point boundary value problem, including all derivatives until order three, with the second and the third derivatives given in different end-points.
An application to the extended Fisher–Kolmogorov problem will be obtained. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2008.10.073 |