On the Use of Structural Vibrations to Release Stiction Failed MEMS
This paper identifies dynamic excitation parameters that promote decohesion of stiction-failed microcantilevers. The dynamic response of "s-shaped" adhered beams subjected to harmonic loading is described using modal analysis; this model is then used to predict the onset of debonding in th...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2007-02, Vol.16 (1), p.163-173 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper identifies dynamic excitation parameters that promote decohesion of stiction-failed microcantilevers. The dynamic response of "s-shaped" adhered beams subjected to harmonic loading is described using modal analysis; this model is then used to predict the onset of debonding in the context of a critical interface energy. These theoretical results are used to rationalize preliminary experiments, which illustrate that dynamic excitation may be used to affect partial or complete repair of stiction-failed microcantilevers. The theoretical results provide fundamental insight regarding regimes where resonant effects trigger debonding and can serve as a potential mechanism for stiction repair. The models illustrate that driving a structure at resonance is usually beneficial with regards to debonding. However, this is not universally true; there is no benefit to driving a device at frequencies with unfavorable mode-shapes. Thus, these results provide a reasonable physical and mathematical explanation for the preliminary experimental results, while providing a roadmap for identifying parameters in future tests |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2006.885986 |