Soft-Output Demodulation on Frequency-Selective Rayleigh Fading Channels Using AR Channel Models
This paper is a study of high-performance soft-output demodulation for slow or moderate frequency-selective and flat Rayleigh fading using an autoregressive (AR) channel model. For channel taps modeled as AR processes, the discrete-time-equivalent channel model is derived for a matched filter (match...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2007-10, Vol.55 (10), p.1929-1939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is a study of high-performance soft-output demodulation for slow or moderate frequency-selective and flat Rayleigh fading using an autoregressive (AR) channel model. For channel taps modeled as AR processes, the discrete-time-equivalent channel model is derived for a matched filter (matched to the transmit pulse) and symbol rate-sampled receiver front end. The optimum symbol-by-symbol demodulator is then derived and shown to consist of a joint data and Kalman filter (KF) channel estimator. Additionally, a symbol-by-symbol demodulator with an extended KF is proposed that jointly identifies and tracks the channel and the unknown parameters in AR channel models. A simulation study shows that the proposed algorithms offer significant advantages in performance or complexity compared to several previously proposed algorithms. The algorithms do not exhibit a significant error floor, provide soft-output metrics needed for interleaved coded modulation, provide high performance with a blind initialization, are capable of blind operation with fast acquisition though compatible with pilot-symbol-assisted modulation, and are robust to parameter mismatch. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2007.906427 |