Minimum Energy Tracking Loop With Embedded DC-DC Converter Enabling Ultra-Low-Voltage Operation Down to 250 mV in 65 nm CMOS
Minimizing the energy consumption of battery-powered systems is a key focus in integrated circuit design. This paper presents an energy minimization loop, with on-chip energy sensor circuitry, that can dynamically track the minimum energy operating voltage of arbitrary digital circuits with changing...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2008-01, Vol.43 (1), p.256-265 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Minimizing the energy consumption of battery-powered systems is a key focus in integrated circuit design. This paper presents an energy minimization loop, with on-chip energy sensor circuitry, that can dynamically track the minimum energy operating voltage of arbitrary digital circuits with changing workload and operating conditions. An embedded DC-DC converter which enables this minimum energy operation is designed to deliver load voltages between 0.25 V to 0.7 V. The minimum energy tracking loop along with the DC-DC converter and test circuitry were fabricated in a 65 nm CMOS process. The area overhead of the control loop is only 0.05 mm 2 . Measured energy savings of the order of 50%-100% are obtained on tracking the minimum energy point (MEP) as it varies with workload and temperature. The DC-DC converter delivers load voltages as low as 250 mV and achieved an efficiency >80% while delivering load powers of the order of 1 muW and higher from a 1.2 V supply. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2007.914720 |