Impingement of an impact jet onto a spherical cavity. Flow structure and heat transfer

An experimental study of flow characteristics and heat transfer for jet impingement cooling of obstacles in the form of single spherical cavities is reported. The distributions of flow velocities between the nozzle and the obstacle, and also the fields of pressure and heat-transfer coefficients insi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2009-05, Vol.52 (11), p.2498-2506
Hauptverfasser: Terekhov, V.I., Kalinina, S.V., Mshvidobadze, Yu.M., Sharov, K.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An experimental study of flow characteristics and heat transfer for jet impingement cooling of obstacles in the form of single spherical cavities is reported. The distributions of flow velocities between the nozzle and the obstacle, and also the fields of pressure and heat-transfer coefficients inside the cavity were measured. It is found that, at a value of depth the cavity generates the large-scale toroidal vortex, essentially influencing on the heat transfer. The cavity flow becomes unstable, exhibiting low-frequency pulsations of local heat fluxes. In the examined ranges of Reynolds numbers, Re = (1.2–5.8)10 4, and cavity depths (equal to or smaller than 0.5 D c) the local heat-transfer intensity in the cavity is lower than that on a flat obstacle; yet, this reduction is almost fully compensated by increased area of the heat-exchanging surface.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2009.01.018