Random Field Model for Integration of Local Information and Global Information

This paper presents a proposal of a general framework that explicitly models local information and global information in a conditional random field. The proposed method extracts global image features as well as local ones and uses them to predict the scene of the input image. Scene-based top-down in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2008-08, Vol.30 (8), p.1483-1489
Hauptverfasser: Toyoda, T., Hasegawa, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a proposal of a general framework that explicitly models local information and global information in a conditional random field. The proposed method extracts global image features as well as local ones and uses them to predict the scene of the input image. Scene-based top-down information is generated based on the predicted scene. It represents a global spatial configuration of labels and category compatibility over an image. Incorporation of the global information helps to resolve local ambiguities and achieves locally and globally consistent image recognition. In spite of the model's simplicity, the proposed method demonstrates good performance in image labeling of two datasets.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2008.105