Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons

We present a new model of adsorption on micro-mesoporous carbons based on the quenched solid density functional theory (QSDFT). QSDFT quantitatively accounts for the surface geometrical inhomogeneity in terms of the roughness parameter. We developed the QSDFT models for pore size distribution calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2009-06, Vol.47 (7), p.1617-1628
Hauptverfasser: Neimark, Alexander V., Lin, Yangzheng, Ravikovitch, Peter I., Thommes, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new model of adsorption on micro-mesoporous carbons based on the quenched solid density functional theory (QSDFT). QSDFT quantitatively accounts for the surface geometrical inhomogeneity in terms of the roughness parameter. We developed the QSDFT models for pore size distribution calculations in the range of pore widths from 0.4 to 35 nm from nitrogen at 77.4 K and argon at 87.3 K adsorption isotherms. The QSDFT model improves significantly the method of adsorption porosimetry: the pore size distribution (PSD) functions do not possess gaps in the regions of ∼1 nm and ∼2 nm, which are typical artifacts of the standard non-local density functional theory (NLDFT) model that treats the pore walls as homogeneous graphite-like plane surfaces. The advantages of the QSDFT method are demonstrated on various carbons, including activated carbons fibers, coal based granular carbon, water purification adsorbents, and mirco-mesoporous carbon CMK-1 templated on MCM-48 silica. The results of PSD calculations from nitrogen and argon are consistent, however, argon adsorption provides a better resolution of micropore sizes at low vapor pressures than nitrogen adsorption.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2009.01.050