Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates

This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2007-11, Vol.55 (11), p.2092-2103
Hauptverfasser: Quevedo, Daniel E., Goodwin, Graham C., De Dona, Jose A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2103
container_issue 11
container_start_page 2092
container_title IEEE transactions on communications
container_volume 55
creator Quevedo, Daniel E.
Goodwin, Graham C.
De Dona, Jose A.
description This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted here leads to embellishments of the usual (nonadaptive) decision-feedback equalizer and its multistep extensions. It includes a provision for degrees of belief in past estimates, which addresses the problem of error propagation.
doi_str_mv 10.1109/TCOMM.2007.908518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34440138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4383302</ieee_id><sourcerecordid>903628531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4b1818bca694670f4349f13a7af4f02b80cc85acd647e1fe73cda0312f6f6acf3</originalsourceid><addsrcrecordid>eNqFkUFLXDEQx4NUcLvtBxAvoVA9vXXykpfkHetW24VdFGpvhZCNExt55q1J9tBv3-iKQg_1EEKY3wz_yY-QQwYzxqA_vZ5frlazFkDNetAd03tkwrpON_Wh3pEJQA-NVEofkPc53wGAAM4n5NdqO5SQC27oVyzoypior2cZItpEFz8Wzfy3jRGHTBfRjWkzJltCvK34bULMdPT0DIeAnoZIr2wu9DyXcG8L5g9k39sh48fne0p-Xpxfz783y8tvi_mXZeOEhNKINdNMr52VvZAKvOCi94xbZb3w0K41OKc7626kUMg8Ku5uLHDWeumldZ5Pyclu7iaND1vMxdyH7HAYbMRxm00PXLa64-xNUmuoCeQTefxfkgshgHFdwU__gHfjNsW6r9FSMM4UqAqxHeTSmHNCbzap_lH6YxiYR4HmSaB5FGh2AmvP5-fBNjs7-GSjC_m1sRe8Z1XilBztuICIL2VRo3Fo-V8FL6LO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864131707</pqid></control><display><type>article</type><title>Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates</title><source>IEEE Xplore</source><creator>Quevedo, Daniel E. ; Goodwin, Graham C. ; De Dona, Jose A.</creator><creatorcontrib>Quevedo, Daniel E. ; Goodwin, Graham C. ; De Dona, Jose A.</creatorcontrib><description>This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted here leads to embellishments of the usual (nonadaptive) decision-feedback equalizer and its multistep extensions. It includes a provision for degrees of belief in past estimates, which addresses the problem of error propagation.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2007.908518</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Constraint optimization ; Constraints ; Decision feedback equalizers ; Decision-feedback equalizers (DFEs) ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Dispersion ; Equalization ; Equalizers ; Errors ; Estimates ; Exact sciences and technology ; Finite impulse response filter ; Information, signal and communications theory ; Interference constraints ; Intersymbol interference ; Mathematical analysis ; Maximum likelihood detection ; Maximum likelihood estimation ; maximum-likelihood (ML) detection ; Miscellaneous ; Optimization ; Signal and communications theory ; Signal processing ; Signal, noise ; State estimation ; Telecommunications and information theory</subject><ispartof>IEEE transactions on communications, 2007-11, Vol.55 (11), p.2092-2103</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4b1818bca694670f4349f13a7af4f02b80cc85acd647e1fe73cda0312f6f6acf3</citedby><cites>FETCH-LOGICAL-c460t-4b1818bca694670f4349f13a7af4f02b80cc85acd647e1fe73cda0312f6f6acf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4383302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4383302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19439103$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Quevedo, Daniel E.</creatorcontrib><creatorcontrib>Goodwin, Graham C.</creatorcontrib><creatorcontrib>De Dona, Jose A.</creatorcontrib><title>Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted here leads to embellishments of the usual (nonadaptive) decision-feedback equalizer and its multistep extensions. It includes a provision for degrees of belief in past estimates, which addresses the problem of error propagation.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Constraint optimization</subject><subject>Constraints</subject><subject>Decision feedback equalizers</subject><subject>Decision-feedback equalizers (DFEs)</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Dispersion</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>Errors</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Finite impulse response filter</subject><subject>Information, signal and communications theory</subject><subject>Interference constraints</subject><subject>Intersymbol interference</subject><subject>Mathematical analysis</subject><subject>Maximum likelihood detection</subject><subject>Maximum likelihood estimation</subject><subject>maximum-likelihood (ML) detection</subject><subject>Miscellaneous</subject><subject>Optimization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>State estimation</subject><subject>Telecommunications and information theory</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFLXDEQx4NUcLvtBxAvoVA9vXXykpfkHetW24VdFGpvhZCNExt55q1J9tBv3-iKQg_1EEKY3wz_yY-QQwYzxqA_vZ5frlazFkDNetAd03tkwrpON_Wh3pEJQA-NVEofkPc53wGAAM4n5NdqO5SQC27oVyzoypior2cZItpEFz8Wzfy3jRGHTBfRjWkzJltCvK34bULMdPT0DIeAnoZIr2wu9DyXcG8L5g9k39sh48fne0p-Xpxfz783y8tvi_mXZeOEhNKINdNMr52VvZAKvOCi94xbZb3w0K41OKc7626kUMg8Ku5uLHDWeumldZ5Pyclu7iaND1vMxdyH7HAYbMRxm00PXLa64-xNUmuoCeQTefxfkgshgHFdwU__gHfjNsW6r9FSMM4UqAqxHeTSmHNCbzap_lH6YxiYR4HmSaB5FGh2AmvP5-fBNjs7-GSjC_m1sRe8Z1XilBztuICIL2VRo3Fo-V8FL6LO</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Quevedo, Daniel E.</creator><creator>Goodwin, Graham C.</creator><creator>De Dona, Jose A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20071101</creationdate><title>Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates</title><author>Quevedo, Daniel E. ; Goodwin, Graham C. ; De Dona, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4b1818bca694670f4349f13a7af4f02b80cc85acd647e1fe73cda0312f6f6acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Constraint optimization</topic><topic>Constraints</topic><topic>Decision feedback equalizers</topic><topic>Decision-feedback equalizers (DFEs)</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Dispersion</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>Errors</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Finite impulse response filter</topic><topic>Information, signal and communications theory</topic><topic>Interference constraints</topic><topic>Intersymbol interference</topic><topic>Mathematical analysis</topic><topic>Maximum likelihood detection</topic><topic>Maximum likelihood estimation</topic><topic>maximum-likelihood (ML) detection</topic><topic>Miscellaneous</topic><topic>Optimization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>State estimation</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quevedo, Daniel E.</creatorcontrib><creatorcontrib>Goodwin, Graham C.</creatorcontrib><creatorcontrib>De Dona, Jose A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quevedo, Daniel E.</au><au>Goodwin, Graham C.</au><au>De Dona, Jose A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>55</volume><issue>11</issue><spage>2092</spage><epage>2103</epage><pages>2092-2103</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted here leads to embellishments of the usual (nonadaptive) decision-feedback equalizer and its multistep extensions. It includes a provision for degrees of belief in past estimates, which addresses the problem of error propagation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2007.908518</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2007-11, Vol.55 (11), p.2092-2103
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_miscellaneous_34440138
source IEEE Xplore
subjects Applied sciences
Channels
Constraint optimization
Constraints
Decision feedback equalizers
Decision-feedback equalizers (DFEs)
Detection, estimation, filtering, equalization, prediction
Detectors
Dispersion
Equalization
Equalizers
Errors
Estimates
Exact sciences and technology
Finite impulse response filter
Information, signal and communications theory
Interference constraints
Intersymbol interference
Mathematical analysis
Maximum likelihood detection
Maximum likelihood estimation
maximum-likelihood (ML) detection
Miscellaneous
Optimization
Signal and communications theory
Signal processing
Signal, noise
State estimation
Telecommunications and information theory
title Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistep%20Detector%20for%20Linear%20ISI-Channels%20Incorporating%20Degrees%20of%20Belief%20in%20Past%20Estimates&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Quevedo,%20Daniel%20E.&rft.date=2007-11-01&rft.volume=55&rft.issue=11&rft.spage=2092&rft.epage=2103&rft.pages=2092-2103&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2007.908518&rft_dat=%3Cproquest_RIE%3E903628531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864131707&rft_id=info:pmid/&rft_ieee_id=4383302&rfr_iscdi=true