Multistep Detector for Linear ISI-Channels Incorporating Degrees of Belief in Past Estimates

This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2007-11, Vol.55 (11), p.2092-2103
Hauptverfasser: Quevedo, Daniel E., Goodwin, Graham C., De Dona, Jose A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper formulates the channel equalization problem in the framework of constrained maximum-likelihood estimation. This allows us to highlight key issues including the need to summarize past data and to apply a finite alphabet constraint over a sliding optimization window. The approach adopted here leads to embellishments of the usual (nonadaptive) decision-feedback equalizer and its multistep extensions. It includes a provision for degrees of belief in past estimates, which addresses the problem of error propagation.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2007.908518