Fast Control of Filter for Sensorless Vector Control SQIM Drive With Sinusoidal Motor Voltage
A pulsewidth-modulated (PWM) voltage applied to a squirrel-cage induction motor (SQIM) can cause high bearing currents, heating of rotor shaft, voltage spike across the motor terminals, etc. Filtering of this PWM voltage to obtain a sinusoidal output voltage can be a solution to this problem. Howeve...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2007-10, Vol.54 (5), p.2435-2442 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A pulsewidth-modulated (PWM) voltage applied to a squirrel-cage induction motor (SQIM) can cause high bearing currents, heating of rotor shaft, voltage spike across the motor terminals, etc. Filtering of this PWM voltage to obtain a sinusoidal output voltage can be a solution to this problem. However, a passive L-C filter makes the dynamic performance of the drive poor for high-performance control application. In this paper, a feed-forward control strategy for the L-C filter is proposed to have a good bandwidth for the filter output voltage. This filter control strategy is introduced along with a sensorless vector control strategy for the SQIM drive. This complete strategy retains the high dynamic performance of the drive even with the L-C filter. In this paper, a three-level converter is used as a voltage source inverter for the drive to have a less filter-size requirement. The control strategy is verified on a 7.5-hp SQIM drive with a three-level insulated-gate bipolar-transistor inverter and L-C filter. Experimental results validate the high dynamic performance of the drive with filter. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2007.900355 |