Fast Control of Filter for Sensorless Vector Control SQIM Drive With Sinusoidal Motor Voltage

A pulsewidth-modulated (PWM) voltage applied to a squirrel-cage induction motor (SQIM) can cause high bearing currents, heating of rotor shaft, voltage spike across the motor terminals, etc. Filtering of this PWM voltage to obtain a sinusoidal output voltage can be a solution to this problem. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2007-10, Vol.54 (5), p.2435-2442
Hauptverfasser: Mukherjee, S., Poddar, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A pulsewidth-modulated (PWM) voltage applied to a squirrel-cage induction motor (SQIM) can cause high bearing currents, heating of rotor shaft, voltage spike across the motor terminals, etc. Filtering of this PWM voltage to obtain a sinusoidal output voltage can be a solution to this problem. However, a passive L-C filter makes the dynamic performance of the drive poor for high-performance control application. In this paper, a feed-forward control strategy for the L-C filter is proposed to have a good bandwidth for the filter output voltage. This filter control strategy is introduced along with a sensorless vector control strategy for the SQIM drive. This complete strategy retains the high dynamic performance of the drive even with the L-C filter. In this paper, a three-level converter is used as a voltage source inverter for the drive to have a less filter-size requirement. The control strategy is verified on a 7.5-hp SQIM drive with a three-level insulated-gate bipolar-transistor inverter and L-C filter. Experimental results validate the high dynamic performance of the drive with filter.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2007.900355