Fixed-Order Controller Design for Polytopic Systems Using LMIs
Convex parameterization of fixed-order robust stabilizing controllers for systems with polytopic uncertainty is represented as a linear matrix inequality (LMI) using the Kalman-Yakubovich-Popov (KYP) lemma. This parameterization is a convex inner approximation of the whole nonconvex set of stabilizi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2008-02, Vol.53 (1), p.428-434 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Convex parameterization of fixed-order robust stabilizing controllers for systems with polytopic uncertainty is represented as a linear matrix inequality (LMI) using the Kalman-Yakubovich-Popov (KYP) lemma. This parameterization is a convex inner approximation of the whole nonconvex set of stabilizing controllers, and depends on the choice of a central polynomial. It is shown that, with an appropriate choice of the central polynomial, the set of all stabilizing fixed-order controllers that place the closed-loop poles of a polytopic system in a disk centered on the real axis can be outbounded with some LMIs. These LMIs can be used for robust pole placement of polytopic systems. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2007.914301 |