Fixed-Order Controller Design for Polytopic Systems Using LMIs

Convex parameterization of fixed-order robust stabilizing controllers for systems with polytopic uncertainty is represented as a linear matrix inequality (LMI) using the Kalman-Yakubovich-Popov (KYP) lemma. This parameterization is a convex inner approximation of the whole nonconvex set of stabilizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2008-02, Vol.53 (1), p.428-434
Hauptverfasser: Khatibi, H., Karimi, A., Longchamp, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convex parameterization of fixed-order robust stabilizing controllers for systems with polytopic uncertainty is represented as a linear matrix inequality (LMI) using the Kalman-Yakubovich-Popov (KYP) lemma. This parameterization is a convex inner approximation of the whole nonconvex set of stabilizing controllers, and depends on the choice of a central polynomial. It is shown that, with an appropriate choice of the central polynomial, the set of all stabilizing fixed-order controllers that place the closed-loop poles of a polytopic system in a disk centered on the real axis can be outbounded with some LMIs. These LMIs can be used for robust pole placement of polytopic systems.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2007.914301