Design of pH Sensors in Long-Period Fiber Gratings Using Polymeric Nanocoatings
In this paper, two different pH sensors based on the deposition of nanometric scale polymeric films onto the surface of a long-period fiber grating (LPFG) have been studied and compared. An electrostatic self-assembled (ESA) method has been used to create sensitive films with an optimal overlay thic...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2007-03, Vol.7 (3), p.455-463 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, two different pH sensors based on the deposition of nanometric scale polymeric films onto the surface of a long-period fiber grating (LPFG) have been studied and compared. An electrostatic self-assembled (ESA) method has been used to create sensitive films with an optimal overlay thickness. Two types of sensors have been designed: The first one is based on polyallylamine hydrochloride (PAH), polyacrylic acid (PAA), and the second one was done incorporating the pigment Prussian blue (PB) in the PAH/PAA matrix. A theoretical model of multilayer cylindrical waveguides based on coupled-mode theory has been used to predict the position of the attenuation bands as a function of the overlay thickness. Both sensors were tested and compared in terms of sensitivity and response time. A faster response was obtained with the introduction of PB particles in the polymeric matrix. Linear sensors in the pH range 4-7 were obtained, showing good repeatability and high sensitivity |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2007.891933 |