General Solution of Stability Problem for Plane Linear Switched Systems and Differential Inclusions
Characterization and control of stability of switched dynamical systems and differential inclusions have attracted significant attention in the recent past. The most of the current results for this problem are obtained by application of the Lyapunov function method which provides sufficient but freq...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2008-10, Vol.53 (9), p.2149-2153 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Characterization and control of stability of switched dynamical systems and differential inclusions have attracted significant attention in the recent past. The most of the current results for this problem are obtained by application of the Lyapunov function method which provides sufficient but frequently over conservative stability conditions. For planar systems, practically verifiable necessary and sufficient conditions are found only for switched systems with two subsystems. This paper provides explicit necessary and sufficient conditions for asymptotic stability of switched systems and differential inclusions with arbitrary number of subsystems; these conditions turned out to be identical for the both classes of systems. A precise upper bound for the number of switching points in a periodic solution, corresponding to the break of stability, is found. It is shown that, for a switched system, the break of stability may also occur on a solution with infinitely fast switching (chattering) between some two subsystems. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2008.930191 |