Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller

In this paper, a solar-powered compound system for heating and cooling was designed and constructed in a golf course in Taiwan. An integrated, two-bed, closed-type adsorption chiller was developed in the Industrial Technology Research Institute in Taiwan. Plate fin and tube heat exchangers were adop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2009-07, Vol.29 (10), p.2100-2105
Hauptverfasser: Chang, W.-S., Wang, C.-C., Shieh, C.-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a solar-powered compound system for heating and cooling was designed and constructed in a golf course in Taiwan. An integrated, two-bed, closed-type adsorption chiller was developed in the Industrial Technology Research Institute in Taiwan. Plate fin and tube heat exchangers were adopted as an adsorber and evaporator/condenser. Some test runs have been conducted in the laboratory. Under the test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 9 kW and a COP (coefficient of performance for cooling) of 0.37 can be achieved. It has provided a SCP (specific cooling power) of about 72 W/(kg adsorbent). Some field tests have been performed from July to October 2006 for providing air-conditioning and hot water. The efficiency of the collector field lies in 18.5–32.4%, with an average value of 27.3%. The daily average COP of the adsorption chiller lies in 33.8–49.7%, with an average COP of 40.3% and an average cooling power of 7.79 kW. A typical daily operation shows that the efficiency of the solar heating system, the adsorption cooling and the entirely solar cooling system is 28.4%, 45.2%, and 12.8%, respectively.
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2008.10.021