Construction of nonbinary cyclic, quasi-cyclic and regular LDPC codes: a finite geometry approach

This paper presents five methods for constructing nonbinary LDPC codes based on finite geometries. These methods result in five classes of nonbinary LDPC codes, one class of cyclic LDPC codes, three classes of quasi-cyclic LDPC codes and one class of structured regular LDPC codes. Experimental resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2008-03, Vol.56 (3), p.378-387
Hauptverfasser: Lingqi Zeng, Lingqi Zeng, Lan Lan, Lan Lan, Ying Yu Tai, Ying Yu Tai, Bo Zhou, Bo Zhou, Shu Lin, Shu Lin, Abdel-Ghaffar, K.A.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents five methods for constructing nonbinary LDPC codes based on finite geometries. These methods result in five classes of nonbinary LDPC codes, one class of cyclic LDPC codes, three classes of quasi-cyclic LDPC codes and one class of structured regular LDPC codes. Experimental results show that constructed codes in these classes decoded with iterative decoding based on belief propagation perform very well over the AWGN channel and they achieve significant coding gains over Reed-Solomon codes of the same lengths and rates with either algebraic hard-decision decoding or Kotter-Vardy algebraic soft-decision decoding at the expense of a larger decoding computational complexity.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2008.060025