The threefold containing the Bordiga surface of degree ten as a hyperplane section
Let be a very ample vector bundle of rank 2 on $\Bbb P^2$ with c1() = 4 and c2() = 6. Then it is proved that is the cokernel of a bundle monomorphism $\mathcal O_{\Bbb P^2}(1)^{\oplus 2}\to T_{\Bbb P^2}^{\oplus 2}$, where $T_{\Bbb P^2}$ is the tangent bundle of $\Bbb P^2$. This gives a new example o...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2008-11, Vol.145 (3), p.619-622 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let be a very ample vector bundle of rank 2 on $\Bbb P^2$ with c1() = 4 and c2() = 6. Then it is proved that is the cokernel of a bundle monomorphism $\mathcal O_{\Bbb P^2}(1)^{\oplus 2}\to T_{\Bbb P^2}^{\oplus 2}$, where $T_{\Bbb P^2}$ is the tangent bundle of $\Bbb P^2$. This gives a new example of a threefold containing a Bordiga surface as a hyperplane section. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004108001461 |