The threefold containing the Bordiga surface of degree ten as a hyperplane section

Let be a very ample vector bundle of rank 2 on $\Bbb P^2$ with c1() = 4 and c2() = 6. Then it is proved that is the cokernel of a bundle monomorphism $\mathcal O_{\Bbb P^2}(1)^{\oplus 2}\to T_{\Bbb P^2}^{\oplus 2}$, where $T_{\Bbb P^2}$ is the tangent bundle of $\Bbb P^2$. This gives a new example o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2008-11, Vol.145 (3), p.619-622
1. Verfasser: MAEDA, HIDETOSHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be a very ample vector bundle of rank 2 on $\Bbb P^2$ with c1() = 4 and c2() = 6. Then it is proved that is the cokernel of a bundle monomorphism $\mathcal O_{\Bbb P^2}(1)^{\oplus 2}\to T_{\Bbb P^2}^{\oplus 2}$, where $T_{\Bbb P^2}$ is the tangent bundle of $\Bbb P^2$. This gives a new example of a threefold containing a Bordiga surface as a hyperplane section.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004108001461