The Ramsey Number for 3-Uniform Tight Hypergraph Cycles

Let C(3)n denote the 3-uniform tight cycle, that is, the hypergraph with vertices v1, .–.–., vn and edges v1v2v3, v2v3v4, .–.–., vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for which every red–blue colouring of the edges of the complete 3-uniform hypergraph with N vertices contains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2009-03, Vol.18 (1-2), p.165-203
Hauptverfasser: HAXELL, P. E., ŁUCZAK, T., PENG, Y., RÖDL, V., RUCIŃSKI, A., SKOKAN, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let C(3)n denote the 3-uniform tight cycle, that is, the hypergraph with vertices v1, .–.–., vn and edges v1v2v3, v2v3v4, .–.–., vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for which every red–blue colouring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of C(3)n is asymptotically equal to 4n/3 if n is divisible by 3, and 2n otherwise. The proof uses the regularity lemma for hypergraphs of Frankl and Rödl.
ISSN:0963-5483
1469-2163
DOI:10.1017/S096354830800967X