A Systematic Comparison and Multi-Objective Optimization of Humid Power Cycles—Part I: Thermodynamics

The steam injected gas turbine (STIG), humid air turbine (HAT), and TOP Humid Air Turbine (TOPHAT) cycles lie at the center of the debate on which humid power cycle will deliver optimal performance when applied to an aeroderivative gas turbine and, indeed, when such cycles will be implemented. Of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2009-07, Vol.131 (4), p.041701 (10 )-041701 (10 )
Hauptverfasser: Kavanagh, R. M, Parks, G. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The steam injected gas turbine (STIG), humid air turbine (HAT), and TOP Humid Air Turbine (TOPHAT) cycles lie at the center of the debate on which humid power cycle will deliver optimal performance when applied to an aeroderivative gas turbine and, indeed, when such cycles will be implemented. Of these humid cycles, it has been claimed that the TOPHAT cycle has the highest efficiency and specific work, followed closely by the HAT, and then the STIG cycle. In this study, the systems have been simulated using consistent thermodynamic and economic models for the components and working fluid properties, allowing a consistent and nonbiased appraisal of these systems. Part I of these two papers focuses purely on the thermodynamic performance and the impact of the system parameters on the performance; Part II will study the economic performance. The three humid power systems and up to ten system parameters are optimized using a multi-objective Tabu Search algorithm, developed in the Cambridge Engineering Design Centre.
ISSN:0742-4795
1528-8919
DOI:10.1115/1.3026561