Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes
Intrinsic Localized Modes (ILMs) are defined as localizations due to strong intrinsic nonlinearity within an array of perfect, periodically repeating oscillators. Such nonlinear phenomena have been studied for a number of years in the solid-state physics literature. Energy can become localized at a...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2008-10, Vol.54 (1-2), p.13-29 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intrinsic Localized Modes (ILMs) are defined as localizations due to strong intrinsic nonlinearity within an array of perfect, periodically repeating oscillators. Such nonlinear phenomena have been studied for a number of years in the solid-state physics literature. Energy can become localized at a specific location in a discrete system as a result of the nonlinearity of the system and not due to any defects or impurities within the considered systems. Here, such mode localization is studied in the context of microcantilever arrays and microresonator arrays, and it is explored if an ILM can be realized as a forced nonlinear normal mode or nonlinear vibration mode. The method of multiple scales and methods to construct nonlinear normal modes are used to study nonlinear vibrations of microresonator arrays. Investigations reported in this article suggest that it is possible to realize an ILM as a forced nonlinear vibration mode. These results are believed to be important for future designs of microresonator arrays intended for signal processing, communication, and sensor applications. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-007-9288-0 |