On the Leading Error Term of Exponentially Fitted Numerov Methods
Second-order boundary value problems are solved with exponentially-fitted Numerov methods. In order to attribute a value to the free parameter in such a method, we look at the leading term of the local truncation error. By solving the problem in two phases, a value for this parameter can be found su...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Second-order boundary value problems are solved with exponentially-fitted Numerov methods. In order to attribute a value to the free parameter in such a method, we look at the leading term of the local truncation error. By solving the problem in two phases, a value for this parameter can be found such that the tuned method behaves like a sixth order method. Furthermore, guidelines to choose between multiple possible values for this parameter are given. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.2991074 |