On the Leading Error Term of Exponentially Fitted Numerov Methods

Second-order boundary value problems are solved with exponentially-fitted Numerov methods. In order to attribute a value to the free parameter in such a method, we look at the leading term of the local truncation error. By solving the problem in two phases, a value for this parameter can be found su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hollevoet, D, Van Daele, M, Berghe, G Vanden
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Second-order boundary value problems are solved with exponentially-fitted Numerov methods. In order to attribute a value to the free parameter in such a method, we look at the leading term of the local truncation error. By solving the problem in two phases, a value for this parameter can be found such that the tuned method behaves like a sixth order method. Furthermore, guidelines to choose between multiple possible values for this parameter are given.
ISSN:0094-243X
DOI:10.1063/1.2991074