Sliding wear performance of nano-SiO2/short carbon fiber/epoxy hybrid composites

In the present work, epoxy based composites filled with hybrid nano-SiO2 particles and short pitch based carbon fiber were prepared. Copolymer of styrene and maleic anhydride was grafted onto the nanoparticles prior to the compounding so that the nanoparticles can be covalently connected to the comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2009-03, Vol.266 (7-8), p.658-665
Hauptverfasser: Guo, Qing Bing, Rong, Min Zhi, Jia, Guo Liang, Lau, Kin Tak, Zhang, Ming Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, epoxy based composites filled with hybrid nano-SiO2 particles and short pitch based carbon fiber were prepared. Copolymer of styrene and maleic anhydride was grafted onto the nanoparticles prior to the compounding so that the nanoparticles can be covalently connected to the composites' matrix through the reaction between anhydride and epoxide groups during curing. Consequently, the nano-SiO2/matrix interfacial interaction was enhanced. By evaluating sliding wear properties of the composites as a function of the components concentrations, positive synergetic effect was found. That is, both wear rate and friction coefficient of the hybrid composites were significantly lower than those of the composites containing individual nano-SiO2 or short carbon fiber. The composite with 4 wt.% nano-SiO2 and 6 wt.% carbon fiber offered the greatest improvement of the tribological performance. Compared to the results of hybrid composites reported so far, the above composite is characterized by relatively lower filler content, which would facilitate processing in practice. Increased surface hardness, lubricating effect of the sheet-like wear debris reinforced by nano-SiO2 and rapidly formed transfer film were believed to be the key issues accounting for the remarkable wear resisting and friction reducing behaviors.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2008.08.005