On the origin of aluminum-related cathodoluminescence emissions from sublimation grown 4H-SiC( 1 1 2 ¯ 0 )
The spatial origins of emissions from homoepitaxial 4H-SiC( 1 1 2 ¯ 0 ) films have been investigated by cathodoluminescence, secondary ion mass spectrometry, and electron trajectory simulations. At 15 keV (300 K), the spectrum contained three peaks. The most intense peak corresponded (3.18 eV)...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2009-04, Vol.255 (13), p.6535-6539 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spatial origins of emissions from homoepitaxial 4H-SiC(
1
1
2
¯
0
) films have been investigated by cathodoluminescence, secondary ion mass spectrometry, and electron trajectory simulations. At 15
keV (300
K), the spectrum contained three peaks. The most intense peak corresponded (3.18
eV) to the nitrogen donor-to-valence band transition. The lesser two peaks at 2.94
eV and 2.75
eV involved aluminum and oxygen impurities, respectively; both impurities were determined to be in high concentrations in the film–substrate interfacial region. At 25
keV (300
K) the primary emission broadened into a band at ∼3.10
eV. Deconvolution revealed three peaks; the most intense emission was again the nitrogen donor-to-valence band transition. The remaining two peaks at 3.02
eV and 2.90
eV were consistent with transitions involving aluminum impurities. The former peak was not observed in the spectra obtained at lower electron beam energies and was correlated with the conduction band-to-aluminum acceptor level transition. Monte-Carlo simulations showed the origin of the 25
keV (300
K) spectrum was the film–substrate interface. An analysis of the aluminum impurity concentration in this region revealed that the cause of the 3.02
eV emission was a dramatic increase in the concentration of aluminum (3
×
10
16
cm
−3 to 1
×
10
18
cm
−3). The emissions comprising the 3.10
eV band were further investigated at 6
K and 25
keV. The difference in the intensity of the conduction band-to-aluminum acceptor level transition at 6
K and 300
K was attributed to thermal impurity ionization and the spike in the interfacial aluminum concentration previously described. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2009.02.036 |