A lattice Boltzmann model for the compressible Euler equations with second-order accuracy

In this paper, we propose a new lattice Boltzmann model for the compressible Euler equations. The model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. In order to obtain second‐order accuracy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2009-05, Vol.60 (1), p.95-117
Hauptverfasser: Zhang, Jianying, Yan, Guangwu, Shi, Xiubo, Dong, Yinfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new lattice Boltzmann model for the compressible Euler equations. The model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. In order to obtain second‐order accuracy, we employ the ghost field distribution functions to remove the non‐physical viscous parts. We also use the conditions of the higher moment of the ghost field equilibrium distribution functions to obtain the equilibrium distribution functions. In the numerical examples, we compare the numerical results of this scheme with those obtained by other lattice Boltzmann models for the compressible Euler equations. Copyright © 2008 John Wiley & Sons, Ltd.
ISSN:0271-2091
1097-0363
DOI:10.1002/fld.1883