Lateral Performance of Full-Scale Bridge Abutment Wall with Granular Backfill
Bridge abutments typically contain a backwall element that is designed to break free of its base support when struck by a bridge deck during an earthquake event and push into the abutment backfill soils. Results are presented for a full-scale cyclic lateral load test of an abutment backwall configur...
Gespeichert in:
Veröffentlicht in: | Journal of geotechnical and geoenvironmental engineering 2009-04, Vol.135 (4), p.506-514 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bridge abutments typically contain a backwall element that is designed to break free of its base support when struck by a bridge deck during an earthquake event and push into the abutment backfill soils. Results are presented for a full-scale cyclic lateral load test of an abutment backwall configured to represent the dimensions (
1.7
m
height), boundary conditions, and backfill materials (compacted silty sand) that are typical of California bridge design practice. An innovative loading system was utilized that operates under displacement control and that assures horizontal wall displacement with minimal vertical displacement. The applied horizontal displacement ranged from null to approximately 11% of the wall height
(0.11H)
. The maximum earth pressure occurred at a wall displacement of
0.03H
and corresponded to a passive earth pressure coefficient of
Kp
=16.3
. The measured force distribution applied to the wall from hydraulic actuators allowed the soil pressure distribution to be inferred as triangular in shape and the mobilized wall-soil interface friction to be evaluated as approximately one-third to one-half of the soil friction angle. Post-test trenching of the backfill showed a log-spiral principal failure surface at depth with several relatively minor shear surfaces further up in the passive wedge. The ultimate passive resistance is well estimated by the log-spiral method and a method of slices approach. The shape of the load-deflection relationship is well estimated by models that produce a hyperbolic curve shape. |
---|---|
ISSN: | 1090-0241 1943-5606 |
DOI: | 10.1061/(ASCE)1090-0241(2009)135:4(506) |