Effect of Al Content on Hydrogen Storage Properties of Amorphous Mg1-xAlxNi (x=0, 0.1, 0.2, 0.3) Alloy

In this paper,the influence of adding Al on the discharge capacity and cycle stability of amorphous MgNi-based hydrogen storage alloys were investigated. Amorphous Mg1-xAlxNi (x=0, 0.1, 0.2, 0.3) alloy powder was prepared successfully by mechanical alloying (MA). X-ray diffraction (XRD) results show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2009-01, Vol.610-613, p.946-950
Hauptverfasser: Pan, Fu Sheng, Tang, Aitao, Gao, Shan, Ding, Pei Dao, Wang, Jing Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper,the influence of adding Al on the discharge capacity and cycle stability of amorphous MgNi-based hydrogen storage alloys were investigated. Amorphous Mg1-xAlxNi (x=0, 0.1, 0.2, 0.3) alloy powder was prepared successfully by mechanical alloying (MA). X-ray diffraction (XRD) results show that after ball milling with 15h, MgNi alloy formed completely amorphous phase. But for Mg1-xAlxNi (x=0.1, 0.2, 0.3) alloy, it took 30h. It can be concluded that Al partial substituting Mg would decrease the amorphous phase forming ability of Mg-Ni Based Alloy. The discharge capacities and cycle stabilities of these alloys were tested. Compared with amorphous MgNi alloy, the discharge capacities of Mg1-xAlxNi (x=0.1, 0.2, 0.3) alloy were decreased slightly, but the cycle stabilities were significantly enhanced. Mg0.9Al0.1Ni alloy showed the largest discharge capacity and Mg0.8Al0.2Ni alloy showed the best cycle stability. Over all, ternary Mg0.8Al0.1Ni alloy showed the best synthesis properties.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.610-613.946