A Higher-Order Internal Wave Model Accounting for Large Bathymetric Variations

A higher‐order strongly nonlinear model is derived to describe the evolution of large amplitude internal waves over arbitrary bathymetric variations in a two‐layer system where the upper layer is shallow while the lower layer is comparable to the characteristic wavelength. The new system of nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2009-04, Vol.122 (3), p.275-294
Hauptverfasser: De Zárate, Ailín Ruiz, Vigo, Daniel G. Alfaro, Nachbin, André, Choi, Wooyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A higher‐order strongly nonlinear model is derived to describe the evolution of large amplitude internal waves over arbitrary bathymetric variations in a two‐layer system where the upper layer is shallow while the lower layer is comparable to the characteristic wavelength. The new system of nonlinear evolution equations with variable coefficients is a generalization of the deep configuration model proposed by Choi and Camassa [1] and accounts for both a higher‐order approximation to pressure coupling between the two layers and the effects of rapidly varying bottom variation. Motivated by the work of Rosales and Papanicolaou [2], an averaging technique is applied to the system for weakly nonlinear long internal waves propagating over periodic bottom topography. It is shown that the system reduces to an effective Intermediate Long Wave (ILW) equation, in contrast to the Korteweg‐de Vries (KdV) equation derived for the surface wave case.
ISSN:0022-2526
1467-9590
DOI:10.1111/j.1467-9590.2009.00433.x