Confined Swirling Flows of Aqueous Surfactant Solutions Due to a Rotating Disk in a Cylindrical Casing

In this study, confined swirling flows of an aqueous surfactant solution due to a rotating disk in a cylindrical casing were investigated using a sectional flow visualization technique and a two-component laser Doppler velocimetry system. The concentrations of aqueous surfactant solutions (C14TASal)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2008-08, Vol.130 (8), p.081502 (9 )-081502 (9 )
Hauptverfasser: Tamano, Shinji, Itoh, Motoyuki, Yoshida, Mitsunori, Yokota, Kazuhiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, confined swirling flows of an aqueous surfactant solution due to a rotating disk in a cylindrical casing were investigated using a sectional flow visualization technique and a two-component laser Doppler velocimetry system. The concentrations of aqueous surfactant solutions (C14TASal) are 0.4wt%, 0.8wt%, and 1.2wt%. Rheological properties such as shear viscosity and first normal stress difference of the surfactant solution were measured with a rheometer. The patterns of secondary flow were classified using the Reynolds and elasticity numbers. We revealed that the projection formed near the center of the rotating disk moved up and down at a constant frequency for C14TASal0.8wt% and 1.2wt%, which has not been reported as far as we know. The effects of the Reynolds number, elasticity number, and aspect ratio on the velocity profiles were clarified. It was also found that the region of rigid body rotation existed at the higher Reynolds number tested for C14TASal0.4wt%.
ISSN:0098-2202
1528-901X
DOI:10.1115/1.2956593