The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite

The effects of both Li modification and cooling rate on the microstructure and tensile properties of an in situ prepared Al-15%Mg2Si composite were investigated. It was found that the addition of 0.3%Li reduces the average size of Mg2Si primary particles from 30 to 6 mum. The effect of cooling rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-08, Vol.490 (1-2), p.250-257
Hauptverfasser: HADIAN, R, EMAMY, M, VARAHRAM, N, NEMATI, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of both Li modification and cooling rate on the microstructure and tensile properties of an in situ prepared Al-15%Mg2Si composite were investigated. It was found that the addition of 0.3%Li reduces the average size of Mg2Si primary particles from 30 to 6 mum. The effect of cooling rate was investigated by the use of a mold with different section test bars. The results showed an increase in both UTS and elongation values with reduction in section thicknesses corresponding to increasing cooling rates. Adding Li also raised the tensile strength and elongation values and reduced the number of decohered particles observed in fracture surfaces thereby increasing the alloy's ductility. Data scatter and unexpected low tensile values of 3 mm sections were attributed to casting defects observed in fracture surfaces. Large clusters of Mg2Si particles and eutectic cell boundaries were found to be potential crack propagation paths in this alloy.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2008.01.039