Stored energy, vacancies and thermal stability of ultra-fine grained copper

The stored energy and thermal stability of oxygen-free high conductivity copper processed by equal channel angular pressing up to 16 passes at room temperature was studied by differential scanning calorimetry. Stored energy increased with strain up to four passes, after which it saturated at 0.95 ±...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-09, Vol.492 (1), p.74-79
Hauptverfasser: Cao, W.Q., Gu, C.F., Pereloma, E.V., Davies, C.H.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stored energy and thermal stability of oxygen-free high conductivity copper processed by equal channel angular pressing up to 16 passes at room temperature was studied by differential scanning calorimetry. Stored energy increased with strain up to four passes, after which it saturated at 0.95 ± 0.05 J/g. This saturation value is 20% higher than from conventional cold rolling. The microstructure of the copper after eight passes was characterized by an average subgrain size of about 0.21 μm and high-angle boundary fraction of about 35%. The contributions to the stored energy from defects were calculated and compared, suggesting that the stored energy mainly originates from boundaries and vacancies. The restoration activation energy after eight passes was between 77 and 80 kJ/mol. The higher stored energy and lower activation energy compared to cold-rolled copper is attributed to excess vacancies.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2008.02.048