Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch
Carbon-encapsulated cobalt and nickel nanoparticles with core/shell structure have been successfully synthesized with maize-derived starch as carbon source and metal nitrate as metal precursors in flowing hydrogen. The as-prepared M@Cs materials were characterized by scanning electron microscopy (SE...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2008-08, Vol.86 (8), p.904-908 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon-encapsulated cobalt and nickel nanoparticles with core/shell structure have been successfully synthesized with maize-derived starch as carbon source and metal nitrate as metal precursors in flowing hydrogen. The as-prepared M@Cs materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction technique (XRD) and vibrating sample magnetometer (VSM). The effects of the metal precursors on the structure and the size of the M@Cs materials were investigated, and the magnetic properties of the M@Cs materials were measured. The results show that the structure and the size of the M@Cs materials are different in terms of the different metal precursors. The Co@Cs materials are made of the fcc-Co core and the graphitic carbon shell, of which the core diameter is in a range of 20–35
nm, while the Ni@Cs materials are composed of fcc-Ni core and the amorphous carbon shell, of which the core diameter ranges from 30 to 50
nm. The hysteresis loops of the as-made M@Cs materials show that some of the nanoparticles are in a superparamagnetic state at room temperature. A mechanism is proposed to explain the growth process of the M@Cs materials. It is believed that the starch with the helical structure is responsible for the formation of the M@Cs materials featuring the core/shell structure. |
---|---|
ISSN: | 0263-8762 1744-3563 |
DOI: | 10.1016/j.cherd.2008.02.006 |